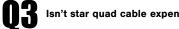
Q & A

Considerations When Configuring and Selecting Cables for Microphone Systems

With the growing demand of recent years for both greater physical comfort and savings in energy consumption, systems incorporating digital control based on the latest advances in electronics are coming into wider use for air conditioning and lighting systems. As all these systems come on line, we cannot help but be reminded of the fact that the wiring used for these digital control systems generates pulse-based electromagnetic noise of the kind that affects the very delicate signals used in microphone lines.

Microphone cables are designed to carry a range of signals that span the spectrum from 1/100 of a volt (10 mV) to 1/1,000,000 (1 μ V). One small error in wiring procedure or cable selection and the entire microphone system turns into an antenna collecting the surrounding noise.

The following section uses a question and answer format to cover a list of the essential points for configuring microphone systems.


Under what sort of conditions should a two-conductor microphone cable be used?

The two-conductor microphone cable is suited to environments where noise is not such a great factor and the audio signals are in the comparatively high -20 dB to 0 dB level range. In such cases, the two-conductor cable offers the advantages of smaller diameter and lower cost. Of course if microphone level, rather than line level, is the criterion being used, star quad cable should be used instead.

Under what conditions should star quad microphone cable be used?

This type is used for environments with a higher noise factor and where audio signals are in the low -50 dB or less range. This type of cable performs well under noise conditions that exceed the capacity of the two conductor shielded cable, effectively shielding out over ninety percent more noise. (See Figs. 1, 2)

However, should this type be routed alongside a power cable of any significant capacity it should probably be encased in metal conduit just to be safe.

Isn't star quad cable expensive?

The cost for this type of cable has fallen significantly in recent years. Several decades ago, cost was so prohibitive a factor that only large musical auditoriums and broadcasting facilities could afford them. Canare succeeded in developing a low-cost star quad cable using aluminum foil in 1981. In addition to traditional professional facilities, this type gained wide use in such non-traditional areas as wedding halls and school lecture rooms.

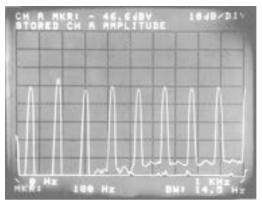


Fig. 1 Noise induced in two-conductor shielded cable (MVVS)

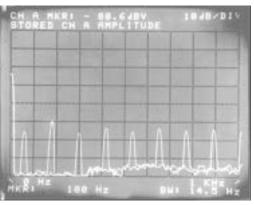
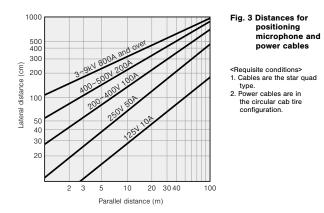


Fig. 2 Noise induced in star quad cable (Canare L-4E5AT)

<Test conditions>

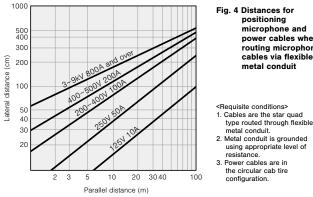
- 1. Flush along power cables for 20 m distance
- Power cable connected to lighting fixture dimmed to 50% capacity with load of 1 kW. 3. The noise induced in the audio cable was boosted by 50 dB in the head amplifier and viewed on a spectrum analyzer.



Star quad cable with aluminum foil shield

When avoiding use of metal conduit, how far away should microphone cable be from power cables?

When foregoing the use of protective metal conduit, use the graph shown in Fig. 3 as a general guide for distancing cables. Note that ignoring basic guidelines for positioning cables can easily result in noise induction problems which are very difficult to deal with later. Encasing microphone cables in metal conduits is highly recommended for applications that utilize the delicate signal range.



What considerations are required when using a rack for strong electric current?

The same as for the preceding question when metal conduit is not used.

Would there be any problem with routing the cables through a flexible metal conduit?

The flexible conduit would certainly help to reduce noise but would not be as effective as a rigid metal conduit. Use the graph in Fig. 4 as a guide for distancing cables.

microphone and power cables when routing microphone cables via flexible

1. Cables are the star guad

Metal conduit is grounded using appropriate level of

What are the criteria for choosing between the many different types of microphone cables?

As all are designed to provide electromagnetic shielding there is not that much basic difference in shielding performance. However, they do differ in various specific characteristics. Cable type should be selected according to specific requirements. (See Fig. 5)

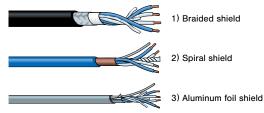


Fig. 5 Types of star quad microphone cables

Braided Shield

The braided copper shield is designed to maintain effective shielding performance, regardless of how many times the cable is unwound, bent, twisted or rewound. It is ideal for use as handheld microphone cables or extension cables. This type is more expensive than other types as it is braided very finely to ensure a highly impenetrable shield. Cable termination requires seasoned expertise.

Spiral Shield

The spiral shield consists of several copper wires wound tightly around the cable in a spiral wind. The shielding effect is heightened by winding the shield on twice, each time from different directions in what is referred to as the "double-spiral shield." The cost range for the spiral shield cable lies roughly mid way between the braided shield and the aluminum foil shield cable. Although cable termination operations are comparatively simple, the spiral shield tends to deteriorate when flexed too frequently. It is designed for stationary installation.

Aluminum Foil Shield

The aluminum foil shield cable consists of aluminum foil fused onto a polyester film and wound around the cable in the form of a tape. Cable termination involves a simple operation and the cable is relatively inexpensive. The aluminum foil cable is recommended for use as stationary cabling.

Aluminum foil cable with a Kevlar cable filler is highly recommended for areas where cables will be routed through metal conduit. The Kevlar filler protects the cable as it passes through the conduit, preventing cable breakage or shorting, even when intense stress is applied to the cable. The aluminum foil cable is currently widely used in function halls and multipurpose track and field stadiums.

AWG is for Indicating conductor size

AWG is the abbreviation for American Wire Gauge. For solid center conductor, numbers are decided by conductor O.D. and for stranded center conductor, numbers are decided by conductor cross sectional area. The AWG numbers for conductors used at Canare are listed in Table 1.

AWG	Conductor cross sec. area (mm2)	AWG	Conductor cross sec. area (mm ²)
13	2.81	22	0.34, 0.37, 0.39
14	2.18	23	0.29, 0.30, 0.31
15	1.75	24	0.20, 0.22, 0.23
16	1.27	25	0.18
18	1.0	26	0.14, 0.15
20	0.51, 0.56	28	0.08, 0.09
	·	31	0.04

Table 1: AWG Numbers for Cables Used by Canare

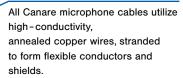
Star Quad Cables

The Star Quad Story

Canare Star Quad obtains its name from the 4-conductor style construction that minimizes the "loop area" between twists of the conductors. This "double balanced" pairing, reduces susceptibility to electromagnetically induced noise. The improvement in noise rejection is so noticeable, that even SCR dimmer noise (stage lighting consoles), is reduced to less than 1/10 the level found in other 2-conductor microphone cables.

Canare Star Quad is designed for use with microphones but is also excellent for all line-level signals (e.g. mixer to power amps). The 4-conductor Star Quad arrangement, cancels electromagnetically induced noise from SCR dimmer packs, fluorescent lighting ballasts and AC power transformers. Handling noise is prevented by use of cotton filler material. Excellent frequency response is maintained due to special irradiated polyethylene insulation which provides a low capacitance dielectric.

Canare Star Quad cable with braided shields is super flexible. We use large numbers of thin wire strands in the copper conductors and overall braided shield. We extrude a special compound PVC outer jacket that remains pliant at extremely low temperatures with no wait between cold shipping and installation.

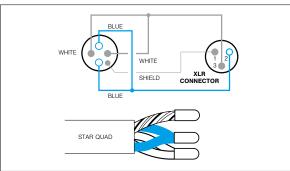

Conductors

Filler

Canare selects cotton, jute and /or exotic polyester fibers for packing. These fillers prevent stretching and twisting of the inner conductors which can cause noise. Additionally, paper, Mylar and/or cloth tape, bind conductors so cables hold their shape.

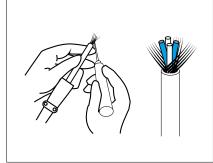
Shield

Canare does not use spiral (serve) shields because they can spread apart with use. Our shields are more difficult to manufacture because we use many thin copper strands in a densely woven braid. The shields are super flexible and offer outstanding noise rejection.


Insulation

Canare cables utilize special polymer compounds that reduce capacitive "R-C" filter roll off within the cable and prevent high voltage breakdown. By irradiating the material, the polymer becomes extensively cross-linked, chemically inert, water resistant, and remains flexible at very low temperatures. Irradiated PE is superior to ordinary polyethylene because it is heat resistant. Canare insulation will not shrink back, flow or char when soldering, so you save initial and rework time, and achieve more reliable connections.

Jacket


Canare uses specially formulated PVC compounds that combine to make a tough, strong and durable outer jacket with excellent flexibility. These qualities are retained even at very low temperatures, so Canare cables will not stiffen or crack. Available in 10 attractive colors.

In order to maximize noise rejection, Star Quad must be properly wired to the XLR-3 connector (or terminal block).

Because the shield density on Canare Cable is very high, it is somewhat difficult to push back the braid and pull the inner

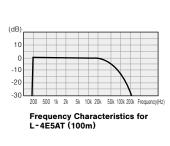
conductors through. Instead, we strongly recommend unbraiding the shield by "combing" it out with a pointed tool, beginning at the end of the cable.

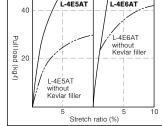
50k 100k 1

Star Quad Cables

Star Quad Microphone Cables (Single)

Effectively reduce noise levels to 1/10 that of general-purpose, 2-conductor shielded cables.


Aluminum Foil Shield


						Composition			Elec	trical char	acteristi	ics
Туре	Model	Sales units	Nom. O.D.	Weight	No. of cond.	Cross sec. area (AWG) and cond. comp.	Twist pitch	Shield	Cond. DCR	Shield DCR	Nom. cap.*	Nom. cap.**
		m	mm	kg/100m	cond.	mm²/(AWG) Q'ty/mm	mm		Ω/100m	Ω/100m	pF/m	pF/m
Jacket color: GRY	L-4E3AT	200 500	3.0	1.2	4	0.08(28) 7/0.12A	16	AL foil	24.6	_	_	
 	L-4E5AT		5.0	3.3	4	0.18(25) 16/0.12A	21		10.7	_	164	222
	L-4E5ATG	100	5.0	3.3	4	0.18(25) OFC 1/0.18+30/0.08	21		11.1	_	164	222
	L-4E6AT	200 400	6.2	5.0	4	0.31(23) 12/0.18A	25	AL foil	6.4	_	150	210
Jacket colors : GRY BLK	L-4E6ATG		5.8	4.6	4	0.34(22) OFC 1/0.18+63/0.08	35		5.5	_	150	210
	L-4E5AT-WBS	100	6.8	8.9	4	0.18 (25) 16/0.12A	21	AL foil	10.7	_	164	222
Jacket color: GRY	L-4E6AT-WBS	400	8.6	12.3	4	0.31 (23) 12/0.18A	25	double braid	6.4	_	150	210

Insulation: Cross-linked PE Jacket: PVC Dielectric strength: 500V AC/min.

L-4E*AT Series

- Designed for fixed installations
- Aluminum foil shielding provides 100% coverage
- DuPont Kevlar* filler can resist stretching of cable when pulled through conduit. (excluding L-4E3AT)
- Foil shield and drain wire offer quick assembly work
- · L-4E*ATG has an OFC conductor
- L-4E*AT-WBS has a high-density double-braided shield. Its foil and braided shield are insulated by inner jacket.

Cable Pull Load and Stretch Ratio

Braided Shield

						Composition			Elec	trical ch	aracteri	stics
Туре	Model	Sales units	Nom. O.D.	Weight	No. of	Cross sec. area (AWG) and cond. comp.	Twist pitch	Shield Coverage (braid)	Cond. DCR	Shield DCR	Nom. cap.*	Nom. cap.**
		m	mm	kg/100m		mm²/(AWG) Q'ty/mm	mm	%	Ω/100m	Ω/100m	pF/m	pF/m
	L-4E5C	100	4.8	3.4	4	0.15(26) 30/0.08A	18	96%	13.0	2.4	162	200
Jacket colors for L-4E5C: BLK RED ORN YEL C-4E6S: ELK GRN RED ORN YEL L-4E6S: ELK GRN RED ORN YEL	L-4E6S	200	6.0	4.8	4	0.20(24) 40/0.08A	20	94%	9.8	3.1	150	185
	L-4E5	100 200	4.8	3.5	4	0.15(26) 30/0.08A	18	96%	13.0	1.9	162	200
Jacket colors for L-4E5: GRY BLK L-4E6: GRY	L-4E6	100 200 400	6.5	6.1	4	0.23(24) 20/0.12A	25	96%	8.6	1.6	144	187

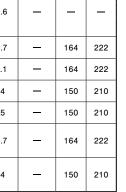
Insulation: Cross-linked PE Jacket: PVC Dielectric strength : 500V AC/min.

L-4E5C. L-4E6S

· Bend resistant design: the conductor consists of ultrafine

0.08 mm strands offers excellent durability.

• High-density braided shield


L-4E5, L-4E6

· High-density braided shield

• Drain wire included

500 1k 2k

Website

*Capacitance between conductors. **Capacitance between conductor and shield.

-30

Star Quad Cables

Multichannel Star Quad Microphone Cables

■ Aluminum Foil Shield

							Unit composit	ion		Elec	trical ch	aracteri	stics
Туре	Model	No. of ch.	Sales units	Nom. O.D.	Weight	No. of cond.	Cross sec. area (AWG) and cond. comp.	Twist pitch	Ch. O. D.	Cond. DCR	Shield DCR	Nom. cap.*	Nom. cap.**
			m	mm	kg/100m		mm²/(AWG) Q'ty/mm	mm	mm	Ω/100m	Ω/100m	pF/m	pF/m
	L-4E3-2AT	2		8.5	7.3	8							
	L-4E3-4AT	4		10.0	11	16							
lor	L-4E3-8AT	8		13.8	19	32	4E3AT Unit	16	3.0	24.8			
	L-4E3-12AT	12	1	15.6	26	48	0.08(28) 7/0.12A	10	3.0	24.0	_	_	
	L-4E3-16AT	16	1	17.2	32	64	170.12A						
	L-4E3-24AT	24	100 200	21.3	47	96							
	L-4E4-2AT	2	500	10.5	12	8							
L-4E4-8AT	L-4E4-4AT	4	1	12.3	17	16							
L 1	L-4E4-8AT	8	1	16.9	31	32	4E4AT Unit	0.1	0.7	10.0		101	000
<u></u>	L-4E4-12AT	12		18.9	41	48	0.18(25) 16/0.12A	21	3.7	10.8	_	164	222
<u></u>	L-4E4-16AT	16		20.9	50	64	10/0.12A						
Jacket color: GRY	L-4E4-24AT	24		26.1	76	96	*0						

Insulation : Cross-linked PE (blue-blue, white-white) Jacket, inner Jacket: PVC Dielectric strength: 500V AC/min. *Capacitance between conductors **Capacitance between conductor and shield.

L-4E3-**AT, L-4E4-**AT

• The multichannel microphone cable is the cable of choice for music auditorium and studio facilities where noise prevention and audio quality are the prime considerations.

• Each unit contains the highly pull-resistant Kevlar* cable filler.

*Kevlar is a trademark of DuPont.

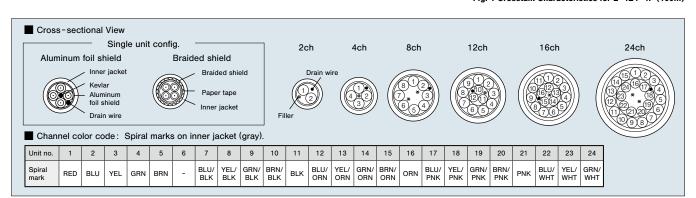
• Drain wire included in each unit.

(dB)	_		_		_	_					1
(dB) 100	-	-			F		_		_	_	
110 120	-										
120	-	-						-	_	_	
130											
140	<u> </u>			_							

Website

(Hz) 8

Braided Shield


							Unit co	ompositi	on		Elec	trical ch	aracteri	stics
Туре	Model	No.of ch.	Sales units	Nom. O.D.	Weight	No. of cond.	Cross sec. area (AWG) and cond. comp.	Twist pitch	Shield coverage (braid)	Ch. O.D.	Cond. DCR	Shield DCR	Nom. cap.*	Nom. cap.**
			m	mm	kg/100m		mm²/(AWG) Q'ty/mm	mm	%	mm	Ω/100m	Ω/100m	pF/m	pF/m
	L-4E3-2H	2		8.9	9.5	8								
/ A. M. 🛏	L-4E3-2P	2		8.9	8.2	8								
	L-4E3-4P	4		10.9	13	16	0.08(28)	16	93%	3.4	24.9	3.4	145	170
	L-4E3-8P	8		15.3	26	32	7/0.12A	10	93%	3.4	24.9	3.4	145	170
	L-4E3-12P	12	100 200	17.4	36	48								
	L-4E3-16P	16	500	18.9	46	64								
L-4E3-8P	L-4E3-24P	24		24.0	70	96								
	L-4E4-2P	2		11.1	13	8	0.15(26)	18	95%	4.0	13.1	2.4	162	200
	L-4E4-4P	4		13.4	21	16	30/0.08A	10	90%	4.0	13.1	2.4	102	200
	L-4E4-8P	8		18.2	34	32								

Insulation: Cross-linked PE (blue-blue, white-white) Jacket, inner jacket: PVC Dielectric strength: 500V AC/min. *Capacitance between conductors **Capacitance between conductor and shield.

L-4E3-2H, L-4E3-**P, L-4E4-**P

- Ideal multichannel cable for PA and live events where cables are laid down and taken back up on a regular basis.
- Each unit of L-4E3-*P and L-4E3-2H contains the highly pull-resistant Kevlar* cable filler. *Kevlar is a trademark of DuPont.

130 140 20 50 100 200 500 1k 2k 5k 10k 20k Frequ ncv(Hz Fig. 1 Crosstalk Characteristics for L-4E4-4P (100m)

(dB) 100

110

Fig	ı. 1					acte (10	oristics 0m)
140	20	50 10	0 200 51	00 1k	2k 5k	10k 20k	Frequency(H
130							_
120							

Two-Conductor Shielded Cables

(dB)

10

0

-10 -20 -30

Two-Conductor Shielded Cables (Single)

Aluminum Foil Shield

						Composition		EI	ectrical ch	aracteristi	cs
Туре	Model	Sales units	Nom. O.D.	Weight	No. of cond.	Cross sec. area (AWG) and cond. comp.	Twist pitch	Cond. DCR	Shield DCR	Nom. cap.*	Nom. cap.**
		m	mm	kg/100m	cona.	mm²/(AWG) Q'ty/mm	mm	Ω/100m	Ω/100m	pF/m	pF/m
Jacket colors : GRY BLK	L-2B2AT 200 500 3.2 1.3		2	0.18(25) 16/0.12A	25	10.5	_	66	120		
Jacket color: GRY	L-2B2AL	200	3.2	1.1	2	0.18(25) 7/0.18TA Overall tin coated	20	11.3	_	_	_
Jacket colors : GRY BLK SEPIA	L-2E5AT	200	5.0	4.0	2	0.31(23) 12/0.18A	30	6.2	_	68	140
	L-2E5AL		5.0	3.7	2	0.29(23) 7/0.23TA Overall tin coated	30	6.8	_	_	_
Jacket color: GRY											

Insulation : Cross-linked PE (polyethylene for L-2E5AL and L-2B2AL) Jacket: PVC Dielectric strength : 500V AC/min. *Capacitance between conductors **Capacitance between conductors and shield.

L-2B2AT, L-2E5AT

- Ideal for internal rack wiring.
- Drain wire included.
- The L-2E5AT contains the Tetoron cable filler reinforcement material. <Fig. 1>

L-2B2AL, L-2E5AL

- Cables for connecting devices with which wrapping tools can be used.
- Drain wire included.

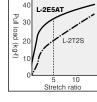


Fig. 1 Pull Load and Stretch Ratio for Cable

Fig. 2 Frequency Characteristics for L-2B2AT (100m)

5k 10k 20k 50k 100k

2

Braided Shield

						Composition			Elec	ctrical ch	aracteris	stics
Туре	Model	Sales units	Nom. O.D.	Weight	No. of	Cross sec. area (AWG) and cond. comp.	Twist pitch	Shield coverage (braid)	Cond. DCR	Shield DCR	Nom. cap.*	Nom. cap.**
		m	mm	kg/100m		mm²/(AWG) Q'ty/mm	mm	%	Ω/100m	Ω/100m	pF/m	pF/m
	L-2T2S	100 200	6.0	4.6	2	0.30(23) 60/0.08A	20	94%	6.5	3.1	60	106
L-2T2S Jacket colors L-2T2S: BLK RED ORN YEL BLU GRY L-2E5: BLK	L-2E5	200	4.6	3.0	2	0.15(26) 30/0.08A	18	97%	12.7	2.2	63	117

Insulation: Cross-linked PE Jacket: PVC Dielectric strength: 500V AC/min.

*Capacitance between conductors **Capacitance between conductor and shield

L-2T2S, L-2E5

• Braid coverage of 94% and above provides dense shielding that blocks out electromagnetic noise.

- L-2T2S consists of 60 ultra-fine 0.08 mm strands (30 for L-2E5) in a stranded format that offers excellent durability.
- Highly pliable and durable PVC used for jacket. (Brittle temp. -49°C)

Website

Two-Conductor Shielded Cables

Spiral Shield

						Composition			EI	ectrical ch	aracteristi	cs
Туре	Model	Sales units	Nom. O.D.	Weight	No. of cond.	Cross sec. area (AWG) and cond. comp.	Twist pitch	Shield coverage	Cond. DCR	Shield DCR	Nom. cap.*	Nom. cap.**
		m	mm	kg/100m	cond.	mm²/(AWG) Q'ty/mm	mm	%	Ω/100m	Ω/100m	pF/m	pF/m
MS202 Jacket color: ELK	MS202	200	2.8	1.4	2	0.18 (25) 1/0.18TA + 30/0.08TA	25	91% (spiral)	11.3	3.2	74	145
MS203 Jacket color : GRY	MS203	200	3.5	2.1	2	0.31(23) 12/0.18TA	30	91% (spiral)	6.5	2.3	_	_

Insulation : Cross-linked PE Jacket : PVC Dielectric strength : 500V AC/min.

MS202

- Ideal for analog audio internal rack wiring.
- Composite conductors with 1 of 0.18 mm and 30 of 0.08 mm strands.
- Drain wire included.

MS203

- Ideal for internal rack wiring.
- Drain wire included.

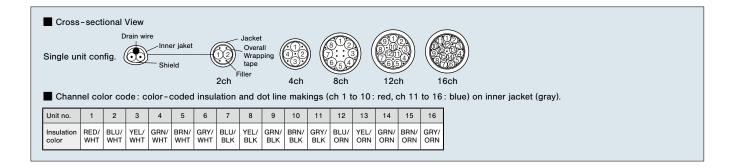
Two-Conductor Shielded Multichannel Cables

Aluminum Foil Shield

							Unit compos	ition		Elec	ctrical ch	aracteris	tics
Туре	Model	No. of ch.	Sales units	Nom. O.D.	Weight	No. of cond.	Cross sec. area (AWG) and cond. comp.	Twist pitch	Ch. O. D.	Cond. DCR	Shield DCR	Nom. cap.*	Nom. cap.**
			m	mm	kg/100m		mm²/(AWG) Q'ty/mm	mm	mm	Ω/100m	Ω/100m	pF/m	pF/m
	L-2E4-2AL	2		8.6	7.6	4							
	L-2E4-4AL	4		10.8	13.1	8							
	L-2E4-8AL	8	100 200 500	14.9	23.7	16	0.29(23) 7/0.23TA Overall tin coated	30	3.7	6.9	—	81	144
L-2E4-2AL	L-2E4-12AL	12		16.9	32.0	24							
Jacket color: GRY	L-2E4-16AL	16		18.8	40.0	32							

Insulation : Cross-linked PE Jacket : PVC Dielectric strength : 500V AC/min.

L-2E4-AL Series


• Used as cables for connecting devices with which wrapping tools can be used.

• Drain wire included in each unit.

Website	No.					Do	ot line	e ma	arkin	igs						
	1	-							I							
回流線回	2		-						-	_						
防治的 (244	3								-	-	-					
1000 C	4			-					-	-	-	-				
出发的	5			—		· -	-	—	-	-	-	-	-	_	_	_
III X 49 TEA	6	_							_	-						
	7	_	l	_					_	-		_				
	8	_	_	_	_				_	-	_	_	-	_		
	9		-	-	_		—		-		-	-	-	_		_
	0								_							_

*Capacitance between conductors **Capacitance between conductor and shield.

*Capacitance between conductors **Capacitance between conductor and shield.

Website

Two-Conductor Shielded Cables

(dB) 90

100

110

120

130

(dB)

90

100

110

120

130

20

50 100 200 500 1

Crosstalk Characteristics for

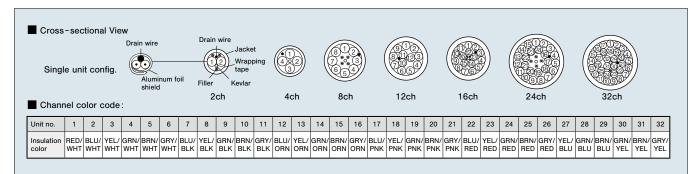
5k 10k

50 100 200 500 1

M202-24AT (100m)

Crosstalk Characteristics for

Aluminum Foil Shield


							Unit compos	ition		Elec	ctrical ch	aracteris	tics
Туре	Model	No. of ch.	Sales units	Nom. O.D.	Weight	No. of cond.	Cross sec. area (AWG) and cond. comp.	Twist pitch	Ch. O. D.	Cond. DCR	Shield DCR	Nom. cap.*	Nom. cap.**
			m	mm	kg/100m		mm²/(AWG) Q'ty/mm	mm	mm	Ω/100m	Ω/100m	pF/m	pF/m
	M202-2AT	2		6.5	4.8	4							
	M202-4AT	4		8.1	9.0	8							
	M202-8AT	8	100	11.1	16	16							
	M202-12AT	12	200 500 -	12.5	18	24	0.18(25) 16/0.12A	30	_	10.5	_	75	135
M202-24AT	M202-16AT	16		13.8	24	32							
	M202-24AT	24		16.8	32	48							
Jacket color: BLK	M202-32AT	32		18.6	40	64							
~	MR202-2AT	2		6.7	4.5	4							
	MR202-4AT	4		7.6	6.2	8							
	MR202-8AT	8	100	11.0	13.2	16							
	MR202-12AT	12	200 500	12.7	18.4	24	0.18(25) 7/0.18A	25	2.7	10.7	-	76	142
	MR202-16AT	16	500	14.0	22.8	32							
R202-24AT	MR202-24AT	24		17.4	34.0	48	48						
Jacket color: BLK	MR202-32AT	32		19.1	43.8	64							
Insulation: Cross-linked PE Jacket: PV	C Dielectric strength : 500	V AC/min					*Capacitance between	conducto	ors **Ca	pacitance	between c	onductor a	nd shield.

M202-AT Series

- Multichannel cable featuring light weight and slim form. At only 16kg for a 50 m length of 24 channel cable, the M202-AT achieves a 47% weight reduction over previous Canare cables.
- · Each channel is individually isolated using insulated (PET) aluminum foil shield. <Fig. 1>
- · Contains the highly pull-resistant Kevlar cable filler.
- Drain wire included.

Note:

This series does not have inner jacket, so it cannot be used for fantails.

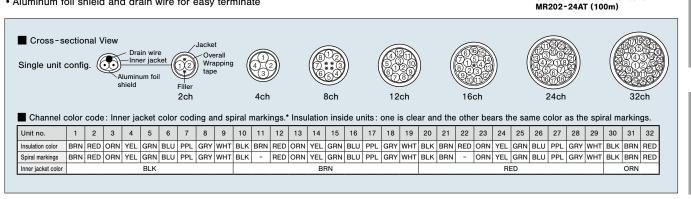
Note:

applications

Not appropriate for heavy-duty

Aluminum surface

Fig. 1 Aluminum Foil Shield


Insulation

(PFT)

MR202-AT Series

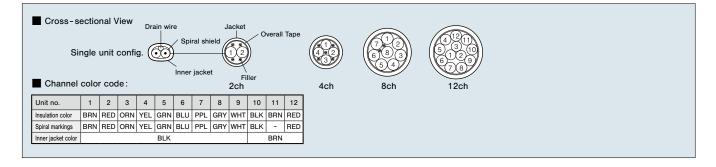
Our bestselling two-conductor multichannel cable featuring AWG 25 stranded conductor, 100% shielding by aluminum foil, and drain wire.

- Studio interconnect, portable snake system
- · Each channel identified per resistor color-coding
- · Aluminum foil shield and drain wire for easy terminate

50

Website

Two-Conductor Shielded Cables


Spiral Shield

							Unit c	ompositi	ion		Elec	trical ch	aracteri	stics
Туре	Model	No. of ch.	Sales units	Nom. O.D.	Weight	No.of cond.	Cross sec. area (AWG) and cond. comp.	Twist pitch	Shield coverage	Ch. O. D.	Cond. DCR	Shield DCR	Nom. cap.*	Nom. cap.**
			m	mm	kg/100m		mm²/(AWG) Q'ty/mm	mm	%	mm	Ω/100m	Ω/100m	pF/m	pF/m
lles	MS202-2P	2		7.1	5.9	4								
	MS202-4P	4	100	100 8.2 200	9.2	8	0.18 (25) 1/0.18TA	25 (91%		11.4	3.3	74	445	
MS202-8P	MS202-8P	8	500	10.9	16.0	16	* 30/0.08TA	25	(spiral)	2.8	11.4	3.3	74	145
Jacket color: BLK	MS202-12P	12		13.6	24.2	24								
Insulation : Cross-linked PE Jacket : PV	sulation: Cross-linked PE Jacket: PVC Dielectric strength: 500V AC/min. *Capacitance between conductors **Capacitance between conductors and shield.													

Website

MS202-P Series

- Multichannel cable for analog audio.
- Composite conductors with 1 of 0.18 mm and 30 of 0.08 mm strands.
- Easy-to-use color-coded units and spiral shield.
- Drain wire included in each unit.

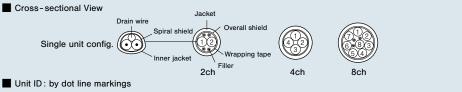
Spiral Shield

							Unit co	mposi	tion			Elect	trical cha	aracteri	stics
Туре	Model	No. of ch.	Sales units	Nom. O.D.	Weight	No.of cond.	Cross sec. area (AWG) and cond. comp.	Twist pitch	Shield coverage	Ch. O.D.	Overall shield coverage	Cond. DCR	Shield DCR	Nom. cap.*	Nom. cap.**
			m	mm	kg/100m		mm²/(AWG) Q'ty/mm	mm	%	mm	(braid)	Ω/100m	Ω/100m	pF/m	pF/m
	MS203-2BS	2		8.9	11	4					79%				
	MS203-4BS	4	100 200 500	10.3	15	8	0.31(23) 12/0.18TA	30	91% (spiral)	3.5	80%	6.6	2.3	-	-
MS203-8BS Jacket color: GRY	MS203-8BS	8		13.5	27	16					00%				

Insulation : Cross-linked PE (orange, white) Jacket: PVC Dielectric strength: 500V AC/min.

MS203-BS Series

- Multichannel version of MS203. (See page 49)
- Overall braided shield enables robust shielding performance.
- Drain wire included in each unit.



Website

No.

*Capacitance between conductors **Capacitance between conductor and shield.

Dot line markings

AES/EBU Digital Audio Cables

Ideal for conveying digital audio signals in conformance with AES/EBU and IEC standards.

				Unit co	mposi	tion		Electr	rical cha	racteri	stics	Charac-	
of Model	Sales units	Nom. O.D.	Weight	Cross sec. area (AWG) and cond. comp.	Twist pitch	Shield coverage (braid)	Unit O.D.	Cond. DCR	Shield DCR	Nom. cap.*	Nom. cap.**	teristic impedance	Attenua- tion
	m	mm	kg/100m	mm²/(AWG) Q'ty/mm	mm	%	mm	Ω/100m	Ω/100m	pF/m	pF/m	Ω	dB/100m (3 MHz)
DA206	100 200	7.3	7.5	0.56(20) 7/0.32A	60	95%	_	3.3	1.4	48	73	110	2.6
DA202	100 200	5.0	3.6	0.18(25) 7/0.18A	32	95%	_	10.6	2.0	48	_	110	5.1
DA202AT	100 200	4.0	1.6	0.18(25) 7/0.18A	38	_	_	10.6	_	45	_	110	6.7
DA203AL	100 200	6.0	4.2	0.29(23) 7/0.23TA Overall tin coated	45	_	_	6.8	_	48	95	110	5.4
DA202F-2P		7.7	6.7										
DA202F-4P	200	8.8	10	0.18(25) 7/0.18TA	25	Spiral	3.0	11.3	3.0	47	95	110	5.6
DA202F-8P		11.5	17			5							
DA203-2AL		11.8	12.2										
DA203-4AL	100	13.8	18.9	0.29(23) 7/0.23TA	12		19	69	_	48	95	110	5.4
DA203-8AL	500	19.3	19.3 33.2	Overall tin	42	2 —	7.5	0.0		70	55		J.7
DA203-12AL		21.9	44.1										
	Model DA206 DA202 DA202AT DA203AL DA202F-2P DA202F-4P DA202F-8P DA203-2AL DA203-8AL	Model units Model m m m DA206 100 DA202 100 DA202 100 DA202 100 DA202AT 100 DA203AL 100 DA202F-2P 200 DA202F-3P 200 DA202F-8P 200 DA203-2AL 200 DA203-8AL 100	Model units O.D. Model m mm DA206 100 7.3 DA202 100 7.3 DA202 100 5.0 DA202AT 100 4.0 DA202F-2P 100 6.0 DA202F-3P 100 8.8 DA203-4AL 11.8 11.8 DA203-8AL 19.3	Model units O.D. Weight m mm kg/100m m mm kg/100m DA206 100 7.3 7.5 DA202 100 7.3 7.5 DA202 100 5.0 3.6 DA202AT 100 5.0 3.6 DA203AL 100 4.0 1.6 DA202F-2P 100 6.0 4.2 DA202F-3P 100 6.0 1.6 DA203-2AL 100 11.5 17 DA203-4AL 100 11.8 12.2 DA203-8AL 100 13.8 18.9	Model units O.D. Weight of Cross sec. area (AWG) and comp. m m mm kg/100m mm2/(AWG) Q'ty/mm DA206 100 200 7.3 7.5 0.56(20) 7/0.32A DA202 100 200 5.0 3.6 0.18(25) 7/0.18A DA202AT 100 200 4.0 1.6 0.18(25) 7/0.18A DA203AL 100 200 6.0 4.2 0.29(23) 7/0.23TA Overall tin coated DA202F-2P 100 200 6.0 4.2 0.18(25) 7/0.18A DA202F-2P 100 200 6.0 4.2 0.18(25) 7/0.18TA DA203-2AL 100 200 500 11.5 17 DA203-2AL 100 200 500 11.8 12.2 DA203-3AL 100 200 500 11.5 17 DA203-2AL 100 200 11.8 12.2 0.29(23) 7/0.23TA Overall tin coated DA203-3AL 100 200 13.8 18.9 0.29(23) 7/0.23TA Overall tin coated	Model units O.D. Weight cross sec. area (AWG) and cond. comp. Twist pitch and cond. comp. m mm kg/100m mm2/(AWG) Q'ty/mm mm DA206 100 7.3 7.5 0.56(20) 7/0.32A 60 DA202 100 5.0 3.6 0.18(25) 7/0.18A 32 DA202AT 100 4.0 1.6 0.18(25) 7/0.18A 38 DA203AL 100 6.0 4.2 0.29(23) 7/0.23TA Overall tin coated 45 DA202F - 4P 100 200 6.0 4.2 0.18(25) 7/0.18A 45 DA203 - 2AL 100 200 6.0 4.2 0.18(25) 7/0.23TA Overall tin coated 25 DA203 - 4AL 100 200 6.0 11.5 17 25 DA203 - 8AL 100 200 500 13.8 18.9 0.29(23) 7/0.23TA Overall tin coated 42	Model units 0.0. Weight of cross sec. area (AWG) and cond.comp. Twist of coverage (braid) rots in the coverage (braid) rots in	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{1}{2} Model \\ Model \\ Model \\ m mm kg/100m Mm2/(AWG) mm % 0.D. Cond Cond Cond Cond Cond Cond Cond Cond$	Model units 0.D. Weight and cond comp. O'L field part (AWG) and cond comp. (braid) with unit coverage (braid) Unit Cond. DCR Shield cap.* Nom. cap.* Nom. cap.* DA206 100 200 7.3 7.5 0.56(20) 7/0.32A 60 95% - 3.3 1.4 48 73 DA202 100 200 5.0 3.6 0.18(25) 7/0.18A 32 95% - 10.6 2.0 48 - DA202AT 100 200 6.0 1.6 0.18(25) 7/0.18A 38 - 10.6 2.0 48 - DA203AL 100 200 6.0 4.2 0.29(23) 7/0.23TA Overall tin coated 45 - 6.8 48 95 DA202F-4P 200 200 200 11.5 17 0.18(25) 7/0.18TA 25 91% Spiral shield 3.0 11.3 3.0 47 95 DA203-2AL 11.5 17 0.18(25) 7/0.23TA Overall tin coated 25 91% Spiral shield	$ \frac{1}{2} \ \ \ \ \ \ \ \ \ \ \ \ \ $

Insulation: Cross-linked PE (DA202F-P: Cross-linked foam PE) Jacket: PVC Dielectric strength: 500V AC/min. *Capacitance between conductors **Capacitance between conductor and shield.

DA206, DA202

- PE rod configuration ensures consistent 110 Ω impedance with large or small bends in cable during installation.
- DA206 ideal for digital audio paths up to 360 m*. DA202 ideal for digital audio paths up to 180 m*.
- DA202 contains a drain wire.

DA202AT

- Designed for internal cabling connections on racks.
- · Ideal for digital audio paths up to 140 m*.
- · Drain wire included.

*Condition : AES3 SR48kHz

Channel Color Coding

DA202F-P: by the insulator color & the spiral markings on the inner jacket (blue).

Unit no.	1	2	3	4	5	6	7	8
Insulator color	BRN, WHT	RED, WHT	ORG, WHT	YEL, WHT	GRN, WHT	BLU, WHT	PPL, WHT	GRY, WHT
Spiral markings	BRN	RED	ORN	YEL	GRN	-	PPL	GRY

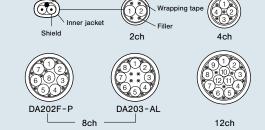
DA203-AL: by the insulator color & the spiral markings on the inner jacket (gray).

Unit no.	1	2	3	4	5	6	7	8	9	10	11	12
Insulator color	RED, WHT	BLU, WHT	YEL, WHT	GRN, WHT	BRN, WHT	GRY, WHT	BLU, BLK	YEL, BLK	GRN, BLK	BRN, BLK	GRY, BLK	BLU, ORG
Spiral markings	RED	BLU	YEL	GRN	BRN	-	BLU, BLK	YEL, BLK	GRN, BLK	BRN, BLK	BLK	BLU, ORG

DA203-AL Series

- Wrapping tool can be used.
- Ideal for digital audio paths up to 170 m*.
- Drain wire included in each unit.

DA202F Series


- · Slim and lightweight.
- DA202F-8P designed to fit snugly with D-sub 25 pin connector.
- · Cross-linked foam PE insulation.
- · Ideal for digital audio paths up to 140 m*.

Drain wire

• Drain wire included in each unit.

Cross-sectional View for DA202F-P & DA203-AL

Single unit config.

Website

Speaker Cables

Speaker Cables (Single)

Four-conductor configuration minimizes noise and polyethylene insulation reduces induction rate to boost frequency characteristics

■ 4-conductor Speaker Cable

		Pair					Comp	osition		Electrical ch	aracteristics
Туре	Model	Pair cross- sec.	Sales units	Nom. O.D.	Weight	No. of cond.	Cross sec. area (AWG)	Cond. comp.	Twist pitch	Cond. DCR	Nom. capacitance*
		mm ²	m	mm	kg/100m		mm²/(AWG)	Q'ty/mm	mm	Ω/100m	pF/m
<u>₩</u>	4S6	1.0		6.4	5.4	4	0.51(20)	20/0.18A	45	3.7	125
	4S8	2.5		8.3	9.5	4	1.27(16)	50/0.18A	70	1.5	145
	4S11	4.3	100 200	10.7	16	4	2.18(14)	41/0.26A	100	0.9	146
458	4S6G	1.0	400	6.4	5.4	4	0.51(20)	20/0.18(OFC)	45	3.7	125
Jacket colors for	4S8G	2.5		8.3	9.5	4	1.27(16)	50/0.18(OFC)	70	1.5	145
4S6: GRY BLK RED BLU CRE WHT 4S8,4S11,4S6G: GRY BLK 4S8G,4S11G: GRY	4S11G	4.3		10.7	16	4	2.18(14)	41/0.26(OFC)	100	0.9	146
Insulation : polyethylene (red, translucent re	d, white, translucent white)	Jacket: F	VC Di	electric st	trength : 500	/ AC/min.				*Capacitance be	tween conductors.

4S6, 4S8, 4S11

• High-performance PVC jacket, resistant to bending and twisting.

• 4S6 designed to fit snugly with Cannon XLR.

4-conductor Speaker Cable for Fixed Installation

4S6G.	4S8G.	4S11G

• The G versions feature oxygen-free copper (OFC, JIS H3510) conductors.

							Compo	osition		Electrical ch	aracteristics
Туре	Model	Pair cross- sec.	Sales units	Nom. O.D.	Weight	No. of cond.	Cross sec. area (AWG)	Cond. comp.	Twist pitch	Cond. DCR	Nom. capacitance*
		mm ²	m	mm	kg/100m	1	mm²/(AWG)	Q'ty/mm	mm	Ω/100m	pF/m
	4S10F	3.5		9.6	15	4	1.75(15)	33/0.26A	100	1.1	144
	4S12F	5.6		11.6	22	4	2.81(13)	35/0.32A	120	0.7	152
	4S14F	8.0	100 200	14.0	32	4	4.02(12)	50/0.32A	120	0.5	_
4S10F	4S18F	14.2	400 1000	17.5	53	4	7.08(9)	88/0.32A	150	0.3	_
	4S10FG	3.5		9.6	15	4	1.75(15)	33/0.26(OFC)	100	1.1	144
Jacket colors for 4S10F, 4S12F, 4S14F, 4S18F: GRY BLK 4S10FG, 4S12FG: GRY	4S12FG	5.6	1	11.6	22	4	2.8(13)	35/0.32(OFC)	120	0.7	152
Insulation : polyethylene (red, translucent re	d, white, translucent white)	Jacket: I	PVC Di	electric s	trength: 500	V AC/min.				*Capacitance bet	ween conductors.

4S10F, 4S12F, 4S14F, 4S18F

• Special supple jacket designed for use in building conduits.

4S10FG, 4S12FG

• The G versions feature oxygen-free copper (OFC, JIS H3510) conductors.

Multichannel Speaker Cables

		Pair					Unit composition			Electrical ch	aracteristics
Туре	Model	cross- sec.	Sales units	Nom. O.D.	Weight	No. of cond.	Cross sec. area (AWG) and cond. comp.	Twist pitch	Ch. O.D.	Cond. DCR	Nom. capacitance*
		mm ²	m	mm	kg/100m		mm²/(AWG) Q'ty/mm	mm	mm	Ω/100m	pF/m
	S410-4P	2.0		15.0	26	16					
	S410-6P	2.0	100 200 500	18.3	39	24	1.0(18) 127/0.10(OFC)	50	5.1	1.9	165
S410-4P Jacket color: GRY	S410-8P	2.0		21.6	53	32					

Insulation : Polyethylene

Jacket : PVC Dielectric strength: 500V AC/min.

S410-P Series

- Low crosstalk performance
- · Ideal for use in multi-way speaker systems.
- Oxygen-free copper (OFC, JIS H3510) conductors.

(dB)							
40							
50							
60		++					
70					\wedge		
80							
	20	50 100	200 50) 1k 2k	5k 10k 20	lk Freque	ncy(Hz)

Fig. 1 Crosstalk Characteristics for S410-4P

Cross-sectional View of S410-4P and Channel color coding X Wrapping tape Δ Single unit config. Filler 6P 4P 2 7 Unit no. 1 3 4 5 6 8 RED/WHT/ RED/WHT BLU/WHT/ BLU/WHT YEL/WHT/ YEL/WHT GRN/WHT BRN/WHE/ BRN/WHT GRY/WHT/ GRY/WHT BLU/BLK/ BLU/BLK YEL/BLK/ YEL/BLK Insulation color

*Capacitance between conductors.

Speaker Cables

2-conductor Speaker Cable

						Comp	osition		Electrical ch	aracteristics
Туре	Model	Sales units	Nom. O.D.	Weight	No. of cond.	Cross sec. area (AWG)	Cond. comp.	Twist pitch	Cond. DCR	Nom. capacitance*
		m	mm	kg/100m		mm²/(AWG)	Q'ty/mm	mm	Ω/100m	pF/m
<u> </u>	2S7F		6.8	5.2	2	1.27 (16)	50/0.18A	50	1.5	56
<u> </u>	2S9F		8.9	8.7	2	2.18 (14)	41/0.26A	60	0.9	56
	2S11F]	11.1	14	2	3.62 (12)	45/0.32A	80	0.5	55
	2S14F	100 200 400	13.8	21	2	5.63 (10)	70/0.32A	90	0.3	55
	2S7FG		6.8	5.2	2	1.27 (16)	50/0.18(OFC)	50	1.5	56
2S11F	2S9FG		8.9	8.7	2	2.18 (14)	41/0.26(OFC)	60	0.9	56
	2S11FG	11.1	14	2	3.62 (12)	45/0.32(OFC)	80	0.5	55	
Jacket colors : GRY BLK	2S14FG		13.8	21	2	5.63 (10)	70/0.32(OFC)	90	0.3	55

Insulation : polyethylene (orange, white) Jacket : PVC Dielectric strength : 500V AC/min.

2S7F, 2S9F, 2S11F, 2S14F

• Special supple jacket designed for use in building conduits.

2S7FG, 2S9FG, 2S11FG, 2S14FG

• The G versions feature oxygen-free copper (OFC, JIS H3510) conductors.

Multicore Speaker Cable

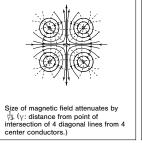
		Sales	Nom.			Composition		Electrical characteristics		
Туре	Model	units	O.D.	Weight	No. of	Cross sec. area and cond. comp.	Cond. O. D.	Cond. DCR	Nom. capacitance*	
		m	mm	kg/100m	cond.	mm²/(AWG) Q'ty/mm	mm	Ω/100m	pF/m	
Jacket color: EIK	8S15G	100	14.9	33.0	8	2.49 (14) 98/0.18 (OFC)	3.26	0.7	51	

Insulation : polyethylene Jacket : PVC Dielectric strength : 500V AC/min

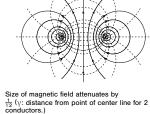
Capacitance between adjacent conductors.

Capacitance between conductors

Website


• Eight-core speaker cable ideally suited for use with Neutrik speaKON NL8 and a line array speaker.

• Oxygen-free copper (OFC, JIS H3510) conductors.


Technical Note

Four-conductor Configuration Minimizes Noise

Speaker cable must accommodate relatively high signal levels, typically tens to hundreds of watts of RMS power. Electromagnetic interference (EMI) can radiate from these speaker lines directly into adjacent low voltage cables (i.e. microphone, video, lines, etc.). Canare solves this problem by using a 4-conductor "Star Quad" configuration in all of our 4S-series speaker cables. Because every conductor is located the same distance from center, the opposing magnetic fields are cancelled out. Attenuation of magnetic field radiation is superior when compared to a standard 2-conductor speaker wire.

Four-conductor cable

Two-conductor cable

Selecting the Right Speaker Cable

damping factor -

Always try to keep speaker cables as short as possible and select cable models that offer a higher damping factor; 20-50 for music (i.e. connect sound) and 10-20 for speech (i.e. sport stadiums).

The greater the damping factor (DF), the better the ability to control speaker excursion to create sharp, clear quality in the low end frequency range.

speaker impedance

power amp. output impedance + cable cond. resist. for total loop

As the above formula shows, a higher conductor resistance causes a lower damping factor, which prevents even top quality power amps from performing at peak optimum levels.

Model	Cross-sec. Area	Cond. Resist.	Cond. Resist. for Total Loop	Cable Le	ength (m)
	mm ² /AWG	Ω/100m	Ω/m	DF = 20	DF = 50
4S6(G)	1.02/17 (pair)	1.85	0.037	9.5	3.0
4S8(G)	2.52/14 (pair)	0.75	0.015	23.3	7.3
4S11(G)	4.36/11 (pair)	0.45	0.009	38.9	12.2
4S10F(G)	3.50/15 (pair)	0.55	0.011	31.8	10.0
4S12F(G)	5.62/13 (pair)	0.35	0.007	50.0	15.7
4S14F(G)	8.00/12 (pair)	0.25	0.005	70.0	22.0
4S18F(G)	14.16/9 (pair)	0.15	0.003	116.7	36.7
S410-*P	2.00/18 (pair)	0.95	0.019	18.4	5.8
2S7F(G)	1.27/16	1.5	0.030	11.7	3.7
2S9F(G)	2.18/14	0.9	0.018	19.4	6.1
2S11F(G)	3.62/12	0.5	0.010	35.0	11.0
2S14F(G)	5.63/10	0.3	0.006	58.3	18.3
8S15G	2.49/14	0.7	0.014	25.0	7.9

Conditions : Speaker impedance = 8 $\Omega,$ Power amplifier output impedance = 0.05 Ω

nectivity Products

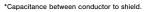
Website


OFC Line, A/V Composite Cables

OFC Line Cables

					Inner cond.		Insulation	Outer conductors	Electrical character		teristics
Туре	Model	Sales units	Nom. O.D.	Weight	Cross sec. area (AWG) and cond. comp.	Nom. O.D.	Nom. O.D.	Shield construction and coverage	Chan. DCR	Shield. DCR	Nom. cap.*
		m	mm	kg/100m	mm²/(AWG) Q'ty/mm	mm	mm	mm/ends/carriers	Ω/100m	Ω/100m	pF/m
	GS-4	200	4.0	2.7	0.39(22) 50/0.1(OFC)	0.82	1.82	Carbon plastic shield + 0.1 (OFC)/6/16 93%	4.7	3.1	_
GS-6 Jacket colors for GS-4: BLK GS-6: BLK RED ORN YEL GRN BLU	GS-6	100 200	5.8	5.0	1.0(18) 127/0.1(OFC)	1.3	3.0	Carbon plastic shield + 0.1 (OFC)/8/16 92%	1.8	2.5	160

Insulation : polyethylene Jacket : PVC Dielectric strength : 500V AC/min.


GS-4, GS-6

- Center conductor with 127 fine 0.1 mm ϕ strands (50 for GS-4) increases durability.

Note: The GS-4 and GS-6 have a layer of carbon plastic shield underneath the braided shield (see Fig. 1) to block out noise. Shorting will result if this shield contacts the center conductor line, so special care must be taken when connecting the cable.

|--|

(dB)]
10			-			-						
0		_	-	-	-	-	-	-	-			
-10		_	+	-	+	+		-		-		
-20 -30			-			-						
-30	200	500	1k	2k	5k	10k	20k	50k '	100k 2l	l0k	Frequ) ency(Hz)

Fig. 2 Frequency Characteristics for GS-6 (100m, $100\Omega \longrightarrow 1M\Omega$ load)

A/V Composite Cables

Used for linking audio video equipment and as extensions for video cameras.

								Unit cor	nposition		Electrical cha	aracteristics
Туре		Model	Sales units	Nom. O.D.	Weight	A:	Unit type Video Audio	Cross sec. area Conductor comp.	Shield coverage	Unit O.D.	Characteristic impedance	Attenuation
			m	mm	kg/100m		: Control line	mm²/(AWG) Q'ty/mm	%	mm	Ω	dB/100m (10 MHz)
		A2V1		9.7	11	v	Video 3C-2V × 1	0.20(25) 1/0.5A	97% (braid)	4.4	75	4.1
	ATTA2	AZVI		9.7		A	Audio L-2B2AT × 2	Refer to L-2B2AT	Alminum foil shield	3.2	_	—
				11.0	16	v	Video 3C-2V × 2	0.20(25) 1/0.5A	97% (braid)	4.4	75	4.1
		A2V2-L				Α	Audio L-2B2AT × 2	Refer to L-2B2AT	Alminum foil shield	3.2	_	—
						с	Control lines 0.2mm ² × 4	0.20(24) 18/0.12A	_	1.3	_	_
		A 21/1 P	100	11.1	13	v	Video 3C-2VS × 1	0.18(25) 7/0.18A	97% (braid)	4.4	75	4.5
A2V1		A2V1B	200	11.1	13	A	Audio 4E3 Unit × 2	0.08(28) 7/0.12A	93% (braid)	3.4	_	_
		A2V2B		12.3	17	v	Video 3C-2VS × 2	0.18(25) 7/0.18A	97% (braid)	4.4	75	4.5
		AZVZD		12.3	17	Α	Audio 4E3 Unit × 2	0.08(28) 7/0.12A	93% (braid)	3.4	_	_
((A3V2-FB		12.4	17	v	Video 3CFB Unit × 2	0.33(22) 1/0.65A	91% (braid) + Alminum foil	4.4	75	3.7
Jacket color: BIK						A	Audio L-2B2AT × 3	Refer to L-2B2AT	Alminum foil shield	3.2	_	_

Jacket: PVC Dielectric strength: 500V AC/min.

A2V1, A2V2-L

A2V1B, A2V2B

• Designed for fixed installation.

A3V2-FB

 3 balanced audio channels and 2 video coax channels for ENG, EFP, or OB applications.

• Ideal for locations requiring cable bending.

DMX, RS422 Cables

DMX Cables

Designed for DMX 512: commonly used to stage lighting control.

						Conductors		Shield			
Туре	Model	Sales units	Nom. O.D.	Weight	No. of cond.	Cross sec. area (AWG) and cond. comp.	Twist pitch	Foil	Braid comp. (coverage)	Cond. DCR	Character- istic impedance
		m	mm	kg/100m		mm²/(AWG) Q'ty/mm	mm		mm/ends/ carries	Ω/100m	Ω
Jacket colors: ELK CRY WHT	DMX203-2P	100 200 500	7.9	7.9	4 (2 pair)	0.35(22) 44/0.10TA	25	AL	0.10TA/10/24 (94%)	5.9	110
Jacket color : ELK [WHT]	DMX203	100 200	6.0	5.0	2 (1 pair)	0.35 (22) 44/0.10TA	45	AL	0.10TA/10/24 (94%)	5.8	110
Jacket color : ELK [WHT]	DMX403	100 200	6.5	6.2	4 (quad)	0.35 (22) 44/0.10TA	50	AL	0.10TA/10/24 (94%)	5.8	110

Insulation : Cross-linked PE Jacket : Frame retardant PVC Dielectric strength : 500V AC/min.

DMX203-2P

- Standard DMX cable
- PE filler rods ensure consistent 110Ω impedance

DMX203

- Single pair cable suitable for RDM (Remote Device Management) bidirectional communication.
- PE filler rods ensure consistent 110Ω impedance

DMX403

- Slim profile 4-conductor cable
- Can be easily inserted into Neutrik NC5 connector.
- More flexible than DMX203-2P

RS422 Cables

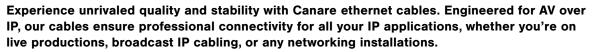
								Unit con	nposition		Overall		
Туре	Cross- section view	Model	Sales units	Nom. O.D.	Weight		Unit type	Cross sec. area (AWG) and cond. comp.	Shield coverage	Unit O.D.	Overall Shield coverage	Conductor resistance	Characteristic impedance
			m mm kg/100m		mm²/(AWG) Q'ty/mm	%	mm	%	Ω/100m	Ω			
		A2C3		6.5	5.5	A	Digital lines two conductor shielded × 2	0.09(28) 7/0.127TA	90% Spiral shield	2.5	_	25.3	110
acket color: BLK		ALOU	100		0.0	с	Control lines 0.2mm ² × 3	0.22(24) 11/0.16TA	_	1.24		9.0	-
		4202-66	500	70	7.0	А	Digital lines two conductor shielded × 2	0.09(28) 7/0.127TA	90% Spiral shield	2.5	91% Spiral	25.3	110
Jacket color: BLK		A2C3-SS		7.0	7.2	с	Control lines 0.2mm ² × 3	0.22(24) 11/0.16TA	_	1.24	shield	9.0	_

Insulation : Cross-linked foam PE Jacket : Frame retardant PVC Dielectric strength : 500V AC/min.

A2C3

- Short distance version of the RS422 class cables.
- Irradiated foam core PE used for the insulation in the digital signal unit.

A2C3-SS


• Created by adding an overall spiral shield to the A2C3 to heighten shielding performance.

Website

Website

Ethernet Cables

Ethernet Cables

Mobile PoE PoE+ PoE++

						Conducto	ors		lı	nsertion los	s
Туре	Model	Shield type	Sales units	Nom. O.D.	Weight	Cross sec. area & composition	DCR	Imped- ance	100 MHz	250 MHz	500 MHz
			m	mm	kg/100m	mm²/(AWG) Q'ty/mm	Ω/100m	Ω	dB/100m	dB/100m	dB/100m
Jacket color: ELK	New RJC6A-4P-SFM Cat 6A	Overall AL foil and braid (SF/UTP)	100 200	8.6	8.9	0.26 (23) 1/0.57A	8.2	100	19.1	31.1	45.3
Jacket color: ELK	RJC5E-4P-WJ 5e	N/A (U/UTP)	100 200	7.4	5.4	0.22 (24) 1/0.53A	8.8	100	22.0	_	_
Jacket color: BLK	RJC5ES-4P-BS 5e	Overall braid (S/UTP)	100 200	6.7	6.1	0.22 (24) 7/0.20A	9.5	100	44.0	_	_
Insulation : polyethylene Jacket : PVC	Dielectric strength: 700V AC/n	nin									

RJC6A-4P-SFM

- Flexible and rugged SF/UTP Cat6A cable
- 10GbE 10GBASE-T network
- Maximum distance to 100 meters
- Aluminum foil + braided shielding

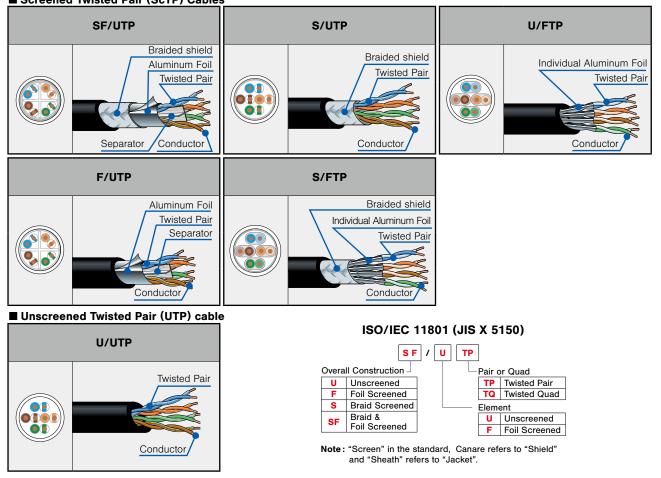
RJC5E-4P-WJ

- Durable U/UTP Cat5e cable
- 1GbE 1000BASE-T network
- Maximum distance to 100 meters
- Double PVC jacket

RJC5ES-4P-BS

- Flexible S/UTP Cat5e cable
- 1GbE 1000BASE-T network

Website


- Maximum distance to 50 meters
- Stranded conductors
- Braided shielding

Technical Note

Growing market demand of higher data rates, ethernet cables are adding several different types. The following is a quote from ISO/IEC standard for LAN cables.

Ethernet Cable Guide

■ Screened Twisted Pair (ScTP) Cables

Ethernet Cables, Modular Plug

General Poe Poe+	PoE++										
						Conducto	ors		In	sertion los	ss
Туре	Model	Shield type	Sales units	Nom. O.D.	Weight	Cross sec. area & composition	DCR	Imped- ance	100 MHz	250 MHz	500 MHz
			m	mm	kg/100m	mm²/(AWG) Q'ty/mm	Ω/100m	Ω	dB/100m	dB/100m	dB/100m
Jacket colors : DLK (WHT)	New RJC6A-F4PH	Individual aluminum foil (U/FTP)	200	7.6	5.5	0.27(23) 1/0.59A	9.4	100	19.1	31.1	45.3
Jacket colors : BLK RED BLU LB WHT	RJC6A-4P-F	Overall aluminum foil (F/UTP)	100 200	7.5	5.2	0.23 (24) 1/0.54A	9.4	100	19.1	31.1	45.3
Jacket colors : ELK 15	RJC6-4P-F	Overall aluminum foil (F/UTP)	100 200	7.0	5.0	0.23 (24) 1/0.54A	9.4	100	19.8	32.8	_
Jacket color: BLK	RJC6-4P+	N/A (U/UTP)	305	6.0	3.8	0.24 (23) 1/0.55A	9.4	100	19.8	32.8	_
Jacket color:	RJC5E-4P+ Cat 5e	N/A (U/UTP)	305	5.0	3.0	0.20 (24) 1/0.50A	9.4	100	22.0		

Insulation: polyethylene Jacket: PVC

Dielectric strength: 700V AC/min.

RJC6A-F4PH

noral

- HDBaseT3.0 Premium certified
- U/FTP Cat6A cable 10GbE 10GBASE-T network
- Maximum distance to 100

RJ45 Modular Plug

- meters
- UL rated
- CPR version available

RJC6A-4P-F HDBaseT certified

- F/UTP Cat6A cable
- 10GbE 10GBASE-T network
- Maximum distance to 100 meters

RJC6-4P-F

- High quality F/UTP Cat6 cable
- 1GbE 1000BASE-T network
- Maximum distance to 100 meters

RJC6-4P+, RJC5E-4P+

- High quality U/UTP cable
- Budget friendly solution
- 305m (1000ft) in pull box • UL rated

• IDC style, field termination ready Assembled without any special tools

Model

RJSP-6AFT New

*Standard package (1 pc)

Removal latch button for 25% lower height

Field Termination POE POE+ POE++

RJC6A-F4PH

*Acceptable cables: OD 6.0 to 7.7mm, Insulator 0.8 to 1.47mm, 26AWG to 23AWG (Stranded / Solid)

Suitable Cable

(Other suitable LAN cables specified below.)

Accessory

RJSP-FTLB New L	Latch Button for RJSP-6AFT, black

*Standard package (10 pcs)

Simplified Assembly Guide *See "Instructions" for details

Standards ANSI/TIA-568-C.2 Cat6A, ISO 11801, ANSI/TIA-1096-A, IEC 60603-7

* "HDBaseT" and "HDBaseT Logo" are registered by HDBaseT Allian

(70.2)

RJSP-6AFT

RJSP-FTLB

75Ω Coaxial Cables

75Ω Coaxial Cables

Analog to digital. HD to UHD. Canare 75Ω coaxial cable series expands the range of choices for any kind of video formats.

■ Ultra Coax 12G-SDI															
					Inner co	ond.	Insulation	Oute	er conductors	Inner	Outer		Charac-		
Туре	Model	Sales units	Nom. O.D.	Weight	Comp.	O.D.	O.D.	Foil	Braid comp. (coverage)	cond. resist.	cond. resist.	Static capacity	teristic	Attenua- tion	NVP
		m	mm	kg/100m	(AWG) Q'ty/mm	mm	mm		mm/ends/ carriers	Ω/km	Ω/km	pF/m	Ω	dB/100m (6 GHz)	%
<u> </u>	L-3.3CUHD	100 200	5.5	4.1	(21) 1/0.75A	0.75	3.3	Cu	0.12TA/8/16 (92%)	41.4	14.9	55	75	68.5	82
	L-5.5CUHD	100 200 500 1000	7.7	7.1	(16) 1/1.35A	1.35	5.55	Cu	0.12TA/8/24 (91%)	12.8	10.3	52	75	39.1	86
	L-8CUHD	100 200 500 1000	11.1	14.1	(13) 1/2.00A	2.00	8.26	Cu	0.16TA/8/24 (90%)	5.8	6.3	52	75	27.9	86

Jacket: PVC Dielectric strength: 1000V AC/min.

L-CUHD Series

Specially designed for 12G-SDI

• The max. transmission distance of 4K UHD over L-5.5CUHD single link able to reach 100 m or longer*.

*Depending on receiving equipment.

· As handy as conventional coaxial cables.

· Copper foil and high-density tinned copper braided shielding.

• Highly-foamed multi-layer PE insulation

Note 1: Designed for fixed installation, please avoid repeated bending or external pressure. Note 2: Cable strippers (TS100 series) cannot be used for L-5.5CUHD and L-8CUHD.

Super Coax

					Inner co	ond.	Insulation	Oute	er conductors	Inner	Outor		Charao		
Туре	Model	Sales units	Nom. O.D.	Weight	Comp.	O.D.	O.D.	Foil	Braid comp. (coverage)	Inner cond. resist.	Outer cond. resist.	Static capacity	Charac- teristic impedance	Attenua- tion	NVP
		m	mm	kg/100m	(AWG) Q'ty/mm	mm	mm		mm/ends/ carriers	Ω/km	Ω/km	pF/m	Ω	dB/100m (1.5 GHz)	%
~	<u>12G-SD/</u> L-2.5CHD		4.2	2.6	(23) 1/0.59A	0.59	2.59	AL	0.12TA/7/16 (95%)	66.9	16.9	53	75	43.1	82
	L-4CHD		6.1	5.2	(20) 1/0.82A	0.82	3.68	AL	0.14TA/8/16 (95%)	36.4	11.4	53	75	30.6	82
~	<mark><i>12G-SDI</i> L - 4.5CHD</mark>	100	7.0	6.2	(18) 1/1.02A	1.02	4.57	AL	0.14TA/6/24 (91%)	23.3	9.9	53	75	25.1	81
	L-5CHD	200	7.7	7.4	(17) 1/1.20A	1.20	4.9	AL	0.14TA/7/24 (93%)	16.1	8.2	53	75	22.5	85
	L-6CHD		8.9	9.0	(16) 1/1.40A	1.40	6.1	AL	0.14TA/8/24 (92%)	11.8	7.7	53	75	19.0	83
	L-7CHD		10.2	13.0	(14) 1/1.80A	1.80	7.3	AL	0.16TA/8/24 (92%)	7.1	6.1	53	75	15.9	84
Jacket colors: BLK and others	L-8CHD		11.1	13.5	(12) 1/2.00A	2.00	8.2	AL	0.16TA/8/24 (89%)	5.8	6.3	53	75	14.1	84
Jacket colors: EIK and others	L-2.5CHLT	100 200	4.2	1.8	(23) 1/0.59A	0.59	2.59	AL	0.14TCCA/6/16 (95%)	66.9	21.5	53	75	43.1	82

Dielectric strength: 1000V AC/min. Jacket: PVC

L-CHD Series

- Best suited to 3G-SDI/HD-SDI transmission.
- · Highly-foamed PE insulation allows further improvement in the attenuation characteristics.
- Multi-layer insulation in which to each layer is given a different foaming ratio is used to increase strength.
- · High-density tinned copper braided shield with aluminum foil brings excellent shielding.
- · Solid conductor

L-2.5CHD and L-4.5CHD 12G-SDI

Sweep test up to 12GHz

12G-SDI solution with Canare Micro BNC

L-2.5CHLT

- Ideal for an O.B. van installation.
- Tinned copper-clad aluminum (CCA) braided shield brings an advantage in weight-saving.
- 30% lighter than L-2.5CHD, yet the same attenuation.
- Space-saving slim design: O.D. 4.2 mm
- · High-density braided shield with aluminum foil
- · Highly-foamed PE insulation
- · Solid conductor
- Note 1: Designed for fixed installation, please avoid repeated bending or external pressure.

 Note 2: L-2.5CHLT has less connection strength with the connector BCP-B25HD compared with L-2.5CHD.

 Note 3: Availability for Cable Stripper TS100 Series:

 OK: L-2.5CHD and L-2.5CHLT, N/A: others

75Ω Coaxial Cables

Mobile Coax

					Inner co	ond.	Insulation	Outer conductors	Inner	Outer		Charac-		
Туре	Model	Sales units	Nom. O.D.	Weight	Comp.	O.D.	O.D.	Braid comp. (coverage)	cond. resist.	cond. resist.	Static capacity	teristic impedance	Attenua- tion	NVP
		m	mm	kg/100m	(AWG) Q'ty/mm	mm	mm	mm/ends/ carriers	Ω/100m	Ω/100m	pF/m	Ω	dB/100m (750 MHz)	%
Jacket colors: ELK and others	New L-5.5CUHWS	100 200 300	8.1	8.6	(16) 7/ Compact strand	1.30	5.56	0.10TA/10/24 (92%) 0.10TA/10/24 (90%)	1.4	0.6	54	75	16.7	82.5
Jacket colors: ELI and others	L-2.5CHWS	100 200	4.2	3.2	(24) 7/0.20A	0.6	2.6	0.10TA/8/16 (95%) 0.10TA/9/16 (94%)	8.5	1.0	53	75	37.4	81
Jacket colors: ELX and others	L-4.5CHWS	100 200	7.2	6.6	(20) 7/0.34A	1.02	4.57	0.10A/8/24 (93%) 0.10A/9/24 (95%)	3.3	0.8	53	75	22.8	79.5
	L-3CFW	100	5.8	5.1	(22) 1/0.65A	0.65	3.1	0.12A/5/24 (94%) 0.12A/6/24 (94%)	5.5	0.7	55	75	33.1	79
Jacket colors: BLK and others	L-5CFW	200 1000	7.7	8.1	(18) 1/1.05A	1.05	5.0	0.12A/7/24 (93%) 0.12A/9/24 (96%)	2.1	0.5	55	75	19.4	79

Jacket : PVC Dielectric strength : 1000V AC/min.

L-5.5CUHWS 12G-SDI

- Specially designed for 12G-SDI mobile applications
- Flexible and low loss structure
- Highly-foamed PE insulation
- High-density double braided shield
- Note: L-5.5CUHWS is specially designed as a cable for mobile use. Refer to "Typical Transmission Distance as per SMPTE Standard" on page64 for the length of the cable to be used.

L-CHWS Series

- Designed for mobile applications
- Flexible stranded center conductor
- Highly-foamed PE insulation
- High-density double braided shield

Note : Cable strippers (TS100 series) cannot be used for Mobile Coax.

■ Low Loss Coax

					Inner co	ond.	Insulation	Oute	er conductors						
Туре	Model	Sales units	Nom. O.D.	Weight	Comp.	O.D.	O.D.	Foil	Braid comp. (coverage)	Inner cond. resist.	Outer cond. resist.	Static capacity	Charac- teristic impedance	Attenua- tion	NVP
		m	mm	kg/100m	(AWG) Q'ty/mm	mm	mm		mm/ends/ carriers	Ω/100m	Ω/100m	pF/m	Ω	dB/100m (750 MHz)	%
	L-2.5CFB		4.0	2.4	(25) 1/0.50A	0.50	2.4	AL	0.12TA/6/16 (92%)	9.3	2.0	55	75	37.0	79
	L-3CFB		5.5	4.0	(22) 1/0.65A	0.65	3.1	AL	0.14TA/6/16 (91%)	5.5	1.6	55	75	29.1	79
	L-4CFB	100 200	6.1	4.9	(20) 1/0.80A	0.80	3.7	AL	0.14TA/8/16 (93%)	3.6	1.1	55	75	23.6	79
Jacket colors for	L-5CFB		7.7	7.3	(18) 1/1.05A	1.05	5.0	AL	0.14TA/7/24 (93%)	2.1	0.8	55	75	17.7	79
L-2.5CFB: BLK L-3CFB: BLK and others L-4CFB: BLK and others L-5CFB: BLK and others L-7CFB: BLK	L-7CFB		10.2	13.0	(15) 1/1.50A	1.50	7.3	AL	0.18TA/8/24 (95%)	1.0	0.5	55	75	13.4	79

Jacket : PVC Dielectric strength : 1000V AC/min.

L-CFB Series

• Suited to HD video signals

• High-density tinned copper braided shield with aluminum foil

Solid center conductor

• Foamed PE insulation

Note: Designed for fixed installation, please avoid repeated bending or external pressure.

L-CFW Series

• Designed for mobile applications

Solid center conductor

- Foamed PE insulation
- High-density double braided shield

Website

Website

75Ω Coaxial Cables

■ Standard Coax (Solid PE Insulation)

					Inner co	ond.	Insulation	Outer conductors		<u> </u>		0		
Туре	Model	Sales units	Nom. O.D.	Weight	Comp.	O.D.	O.D.	Braid composition (coverage)	Inner cond. resist.	Outer cond. resist.	Static capacity	Charac- teristic impedance	Atten- uation	NVP
		m	mm	kg/100m	(AWG) Q'ty/mm	mm	mm	mm/ends/carriers	Ω/100m	Ω/100m	pF/m	Ω	dB/100m (10 MHz)	%
	L-1.5C2VS	200	2.9	1.3	(31) 7/0.09A	0.27	1.6	0.10A/5/16 (94%)	41.9	3.3	69	75	8.7	66
	L-3C2VS	100 200	5.5	4.5	(25) 7/0.18A	0.54	3.1	0.12A/7/16 (94%)	10.5	1.9	67	75	4.5	66
L-3C2VS	LV-61S	153	6.1	5.0	(24) 7/0.20A	0.60	3.6	0.12A/6/24 (95%)	8.5	1.3	67	75	3.8	66
Jacket colors: ELK and others	L-5C2VS	100 200	7.4	6.8	(22) 7/0.26A	0.78	4.8	0.12A/7/24 (93%)	5.0	1.2	67	75	2.9	66
	L-2.5C2V		4.0	2.4	(26) 1/0.40A	0.40	2.4	0.12TA/6/16 (94%)	19.2	2.1	69	75	5.2	66
	L-3C2V	100 200	5.4	4.3	(25) 1/0.50A	0.50	3.1	0.14TA/5/24 (97%)	9.3	1.2	67	75	4.1	66
L-3C2V Jacket colors: BLK and others	L-5C2V		7.4	7.2	(20) 1/0.80A	0.80	4.9	0.14TA/7/24 (94%)	3.6	0.8	67	75	2.5	66
	L-3C2W	100	6.5	7.0	(25) 1/0.50A	0.50	3.1	0.14TA/5/24 (97%) 0.14TA/5/24 (93%)	9.3	0.6	67	75	4.1	66
	L-5C2W	200	8.3	11.0	(20) 1/0.80A	0.80	4.9	0.14TA/7/24 (94%) 0.14TA/7/24 (95%)	3.6	0.4	67	75	2.5	66
L-3C2W Jacket color: BLK	LV-77S	153	7.7	9.0	(22) 7/0.26A	0.78	4.8	0.12A/7/24 (92%) 0.12A/8/24 (95%)	5.0	0.6	67	75	3.4	66

Jacket: PVC Dielectric strength: 1000V AC/min.

L-1.5C2VS, L-3C2VS, L-5C2VS, LV-61S

- Ideal for locations requiring cable bending.
- Flexible stranded center conductor
- · High-density braided shield
- LV-61S is equivalent to RG-59B/U

L-2.5C2V, L-3C2V, L-5C2V

- Solid center conductor
- · High-density tinned copper braided shield

Note : Cable strippers (TS100 series) cannot be used for L-1.5C2VS, L-3C2W, L-5C2W and LV-77S

L-3C2W, L-5C2W

 Solid center conductor • High-density tinned copper double braided shield

LV-77S

- · Ideal for locations requiring cable bending.
- Flexible stranded center conductor
- · High-density double braided shield

Analog HD Coax

					Inner co	ond.	Insulation	0	uter conductors	Innor	Outer		Charac-		
Туре	Model	Sales units	Nom. O.D.	Weight	Comp.	O.D.	O.D.	Foil	Braid composition (coverage)	Inner cond. resist.		Static capacity	toristic	Atten- uation	NVP
		m	mm	kg/100m	(AWG) Q'ty/mm	mm	mm		mm/ends/carriers	Ω/100m	Ω/100m	pF/m	Ω	dB/100m (10 MHz)	%
Jacket color: ELK	L-3C-AHD	300	5.5	3.0	(21) 1/0.75A	0.75	3.3	AL	0.14AL/4/24 (84%)	4.1	3.7	55	75	2.5	82

Jacket: PVC Dielectric strength: 1000V AC/min.

L-3C-AHD

- Cost effective aluminum alloy braided shield
- Recommended for an analog high definition video surveillance system.
- Fits for AHD, HD-TVI and HD-CVI, and also for HD-SDI or EX-SDI
- · Highly-foamed PE insulation for better transmission characteristics
- Packaged in REELEX pull box

Note 1: The aluminum braid cannot be soldered. BNC crimp plug for L-3C-AHD: BCP-A3AHD (see page19) Note 2: Designed for fix installation

Nominal Attenuation

Nomina	I Atten	uation					dB/100m	
NTSC D1	NTSC WD1	AHD 1080/30p	HD-TVI 1080/30p	EX-SDI 1080/30p		HD-SDI	3G-SDI	1
7MHz	10MHz	36MHz	48MHz	135MHz	270 MHz	750MHz	1500MHz	ĺ.
2.0	2.5	4.9	5.7	10.1	14.3	24.2	34.7	1

75Ω Coaxial Cables

75Ω Triaxial Cables

					Inner c	ond.	Insulation 1	Outer cond.1	Insulation 2	Outer cond.2	Electrica	l characte	ristics			
Туре	Model	Sales units	Nom. O.D.	Weight	Comp.	O.D.	O.D.	Braid coverage and comp.	O.D.	Braid coverage and comp.	Inner cond. resistance	Outer cond. resistance	Static capacity	Charac- teristic impedance	Atten- uation	NVP
		m	mm	kg/100m	(AWG) Q'ty/mm	mm	mm	mm/ends/ carriers	mm	mm/ends/ carriers	Ω/100m	Ω/100m	pF/m	Ω	dB/100m (10 MHz)	
	L-5CFTX	100 200	8.8	12.0	(19) 1/1.0A	1.0	4.8	0.14A/6/24 (91%)	6.4	0.16A/8/24 (95%)	2.3	_	55	75	2.2	79
	L-4CFTX	100 200	9.1	10.5	(20) 1/0.80A	0.80	3.7	0.14A/7/16 (93%)	5.5	0.14A/7/24 (94%)	3.64	_	55	75	3.0	79
L-5CFTX Jacket colors : BLK RED GRN	L-7CFTX	100 200 500	11.0	15.4	(16) 1/1.40A	1.40	6.5	0.14A/8/24 (93%)	8.7	0.14A/8/24 (88%)	1.18	_	55	75	1.7	79

Insulation: 1: foamed PE 2: polyethylene Dielectric strength: 1000V AC/min.

For digital or analog broadcast camera applications.

Abrasion-resistance PVC jacket.

75Ω Multichannel Coaxial Cables

								Unit co	mpos	ition						
			Sales	Nom.		Inner co	ond.	Insulation	<u> </u>	er conductors		Inner	Outer	Charac-	Attenua-	
Туре	Model	No. of ch.	units	O.D.	Weight	Comp.	O.D.	O.D.	Foil	Braid comp. (coverage)	Unit O.D.	cond. resist.	cond. resist.	teristic impedance	tion	NVP
			m	mm	kg/100m	(AWG) Q'ty/mm	mm	mm		mm/ends/ carriers	mm	Ω/100m	Ω/100m	Ω	dB/100m (750 MHz)	%
	V3-3CFB	3		11.5	14											
	V4-3CFB	4		13.0	19	(22) 1/0.65A	0.65	3.1	AL	0.14TA/6/16 (91%)	4.4	5.6	1.6	75	29.1	79
	V5-3CFB	5		14.2	23											
	V3-4CFB	3		12.9	18											
	V4-4CFB	4	100 500	14.4	23	(20) 1/0.80A	0.80	3.7	AL	0.14TA/8/16 (93%)	5.0	3.6	1.1	75	24.3	79
	V5-4CFB	5		16.1	29											
V4-*CFB	V3-5CFB	3		17.1	29											
	V4-5CFB	4		18.8	36	(18) 1/1.05A	1.05	5.0	AL	0.14TA/7/24 (93%)	6.5	2.1	0.8	75	17.7	79
Jacket color: BLK Insulation: Foamed PE	V5-5CFB	5		21.1	46											
Jacket color: ELC Insulation: Highly-foamed PE	V4-2.5CHW	4	100 500	13.0	21	(23) 1/0.59A	0.59	2.59	_	0.10TA/8/16 (95%) 0.10TA/9/16 (94%)	4.2	6.7	1.0	75	35.7	81
	V3-3CFW	3		13.0	22					0.12A/5/24						
	V4-3CFW	4		14.6	28	(22) 1/0.65A	0.65	3.1	-	(94%) 0.12A/6/24	4.9	5.6	0.7	75	33.1	79
	V5-3CFW	5	100	16.2	34					(94%)						
	V3-5CFW	3	500	18.4	36					0.12A/7/24						
V5-*CFW	V4-5CFW	4		20.4	47	(18) 1/1.05A	1.05	5.0	-	(93%) 0.12A/9/24	7.0	2.1	0.5	75	19.4	79
Jacket color: BLK Insulation: Foamed PE	V5-5CFW	5		22.4	58					(96%)						
	V3-1.5C	3		7.4	7.3											
	V4-1.5C	4		8.4	9.4	(31) 7/0.09A	0.27	1.55	-	0.10A/5/16 (94%)	2.6	42.3	3.3	75	_	66
	V5-1.5C	5		9.2	11											
	V3-3C	3		11.5	15]
	V4-3C	4	100 500	13.0	20	(25) 7/0.18A 0.54	0.54	3.1	_	0.14A/5/24 (97%)	4.4	10.6	1.1	75	43.2	66
V4-*C	V5-3C	5		14.2	24											
	V3-5C	3		15.5	26											
v	V4-5C	4		17.1	33	(22) 7/0.26A	0.78	4.8	-	0.12A/7/24 (93%)	6.0	5.1	1.2	75	29.2	66
Jacket color: BLK Insulation: Solid PE	V5-5C	5		19.2	39											

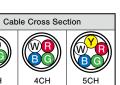
Jacket PVC Dieritric strength: 1000V AC/min.

V-CFB Series

· Low-loss multichannel coax for fixed installations.

V-CHW, V-CFW Series

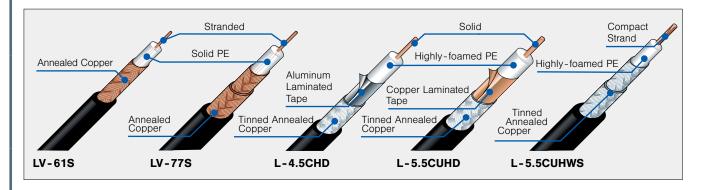
• Mobile multichannel coax developed for digital video signals.


V-C Series

• Our long selling standard multichannel coax with flexible stranded center conductor.

• Ideal for component video signals.

Note : Cable strippers (TS100 series) cannot be used for V-CHW, V-CFW, and V-1.5C.


Website

Technical Note

Many types of video coax. What're the differences and how select?

In brief, there are three of essential factors : 1 center conductor, 2 insulation, and 3 shield. Each factor has its advantage and disadvantage as described below :

		Solid conductor	Single solid metal core, low signal loss, ideal for long-distance or high- frequency transmission.
1	Center	Stranded conductor	Multiple thin strands twisted together, offers flexibility and resistance to bending, commonly used for patch cords and mobile applications.
	Conductor	Compact strand conductor	Multiple fine metal wires tightly bundled, denser than regular stranded conductors, which achieving advantages from both solid and stranded. It enhances low signal loss and flexibility, ideal for 12G-SDI mobile applications.
2	Insulation	would perform better def video. However, si	med", and "Highly-foamed" types. Foamed and highly-foamed insulation attenuation, compared to the solid type thus they are often selected for hi- nce foamed and high-foamed insulation contain the air physically, they are sure. You should pay attention to where and how the cables are installed.
3	Shield	single, double, or triple offers perfect screening	d "Braided with aluminum foil" type. Braided shields include e layers as well as bare copper or tinned copper. Braided with aluminum foil ng, but they are not suitable for repeated bending and mobile applications of strength. In that case, it's better to choose "Braided".

What is Propagation Delay?

Propagation delay refers to the time required for a signal to be transmitted from one end of connection to another. In the case of cable transmission, this greatly depends on the materials and construction of the actual cable, and large differences in delay can cause transmission errors if they exceed the receiver delay tolerance.

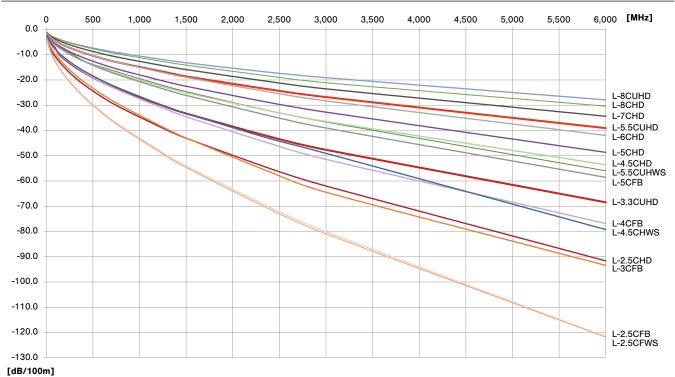
The following table shows the differences in coaxial cable propagation delay time relative to the insulation type.

Propagation Delay Caused by Coaxial Cable Insulation (reference)

Insulation	Propagation Delay
Solid PE	5.0 ns/m
Foamed PE	4.2 ns/m
Highly-Foamed PE	3.7 ns/m

■ Typical Transmission Distance as per SMPTE Standard

SMPTE		ST	259		ST 344	ST 292	ST 424	ST 2082-1
Designation		SD-	- SDI		540 Mbps-SDI	HD-SDI	3G-SDI	12G-SDI
Video Format	NTSC	PAL	525/625 (4:3)	525/625 (16:9)	525/625 (4:3) p60	2K 1080i	2K 1080p	4K UHD
Bit Rate	143 Mb/s	177 Mb/s	270 Mb/s	360 Mb/s	540 Mb/s	1.5 Gb/s	3 Gb/s	12 Gb/s
Clock	143 MHz	177 MHz	270 MHz	360 MHz	540 MHz	1.485 GHz	2.97 GHz	11.88 GHz
Cable Loss @ 1/2 Clock	30 dB @ 72 MHz	30 dB @ 88 MHz	30 dB @ 135 MHz	30 dB @ 180 MHz	30 dB @ 270 MHz	20 dB @ 750 MHz	30 dB @ 1.5 GHz	40 dB @ 6 GHz
Model	m	m	m	m	m	m	m	m
L-2.5CFB	265	242	199	172	139	54	55	32
L-2.5CHD	314	287	237	206	168	66	69	43
L-2.5CHLT	314	287	237	206	168	66	69	43
L-3CFB	344	314	257	222	179	68	69	42
L-3.3CUHD	461	422	306	265	215	85	90	58
L-4CFB	422	314	315	272	220	84	86	52
L-4CHD	447	410	337	294	238	93	98	61
L-5CFB	563	513	420	364	294	112	114	68
L-4.5CHD	551	504	415	361	293	115	119	74
L-5CHD	614	562	464	403	327	128	133	82
L-6CHD	766	700	575	499	403	154	158	95
L-5.5CUHD	769	697	566	491	400	155	161	102
L-7CHD	902	824	678	589	476	184	188	116
L-8CHD	1034	937	769	681	545	208	212	131
L-8CUHD	1034	937	789	681	555	219	227	143
L-2.5CHWS	275	247	198	171	138	53	54	32
V4-2.5CHW	288	258	208	178	144	56	57	34
L-3CFW	319	288	230	197	158	60	60	35
L-4.5CHWS	447	405	322	280	225	87	90	50
L-5CFW	535	483	384	333	267	103	105	56
L-5.5CUHWS	625	566	447	389	312	119	121	71


*The above values are distances when cable loss reaches a typical attenuation specified by SMPTE standard at 1/2 clock frequency. *These values are not equivalent to actual transmission distances, which depends on the equalized distance of receiver. *Please check with vendor of receiver for equalized distance and reference cable to calculate actual transmission distance.

75Ω Coaxial Cables

■ 75Ω Coax Cable Nominal Attenuation

■ 75Ω	Coax Cable Nomina	l Attenu	ation										dB/100m
	Frequency			SMPTE 259M Composite NTSC	ITU-R BT.601 Composite PAL	SMPTE 259M Composite 4:2:2	SMPTE 259M Composite 4:2:2 16×9	SMPTE 344M 540Mb/s SDI	SMPTE 292M HD-SDI		SMPTE ST 424 3G-SDI		SMPTE ST 2082-1 12G-SDI
Model		10MHz	30MHz	72.0MHz	88.0MHz	135MHz	180MHz	270MHz	750MHz	1.3GHz	1.5GHz	3GHz	6GHz
	L-1.5C2VS	8.7	15.2	23.9	26.6	33.2	38.7	48.0	83.7	114.0	123.7	185.9	_
	V*-1.5C	8.7	15.1	23.6	26.2	32.7	37.9	46.8	80.5	108.6	117.5	173.4	—
	L-2.5CFB	4.8	7.6	11.3	12.4	15.1	17.4	21.5	37.0	50.0	54.1	80.2	121.8
	L-2.5CHD/L-2.5CHLT	4.1	6.5	9.5	10.4	12.6	14.5	17.8	30.2	40.0	43.1	62.0	91.7
	L-2.5CHWS	4.0	7.0	10.9	12.1	15.1	17.5	21.7	37.4	50.5	54.7	81.0	121.9
	V4-2.5CHW	3.8	6.7	10.4	11.6	14.4	16.8	20.7	35.7	48.3	52.3	77.4	115.9
	L-3C2V/L-3C2W	4.1	7.2	11.3	12.5	15.7	18.3	22.8	40.0	54.9	59.7	90.5	—
	L-3C2VS/V*-3C	4.5	7.9	12.4	13.8	17.2	20.0	24.8	43.3	58.9	63.9	96.0	-
	L-3CFB/V*-3CFB	3.7	5.9	8.7	9.5	11.7	13.5	16.7	29.1	39.6	43.0	64.5	93.5
	L-3CFW/V*-3CFW	3.4	5.9	9.4	10.4	13.0	15.2	18.9	33.1	45.4	49.4	74.8	114.2
	L-3.3CUHD	2.8	4.4	6.5	7.1	9.8	11.3	13.9	23.4	30.9	33.3	47.7	68.5
	L-4CFB	3.0	4.8	7.1	7.8	9.5	11.0	13.6	23.6	31.9	34.6	51.5	76.9
	V*-4CFB	3.0	4.9	7.2	7.9	9.7	11.2	13.9	24.3	33.2	36.0	54.3	83.8
	L-4CHD	2.9	4.6	6.7	7.3	8.9	10.2	12.6	21.3	28.4	30.6	44.3	65.1
750	L-4.5CHD	2.3	3.7	5.4	6.0	7.2	8.3	10.2	17.4	23.2	25.1	36.5	53.6
75Ω	L-4.5CHWS	2.5	4.3	6.7	7.4	9.3	10.7	13.3	22.8	30.8	33.3	49.1	79.3
	L-5C2V/L-5C2W	2.5	4.5	7.1	7.9	9.9	11.5	14.4	25.7	35.7	38.9	60.0	94.8
	L-5C2VS/V*-5C	2.9	5.1	8.1	9.0	11.3	13.2	16.5	29.3	40.8	44.4	68.3	108.0
	L-5CFB/V*-5CFB	2.2	3.6	5.3	5.8	7.1	8.2	10.2	17.7	24.1	26.1	39.1	58.6
	L-5CFW/V*-5CFW	2.1	3.6	5.6	6.2	7.8	9.0	11.2	19.4	26.2	28.4	42.2	70.5
	L-5CHD	2.1	3.3	4.9	5.3	6.5	7.4	9.1	15.6	20.8	22.5	32.8	48.7
	L-5.5CUHD	1.5	2.5	3.9	4.3	5.3	6.1	7.5	12.9	17.1	18.5	26.8	39.1
	L-5.5CUHWS	1.7	3.1	4.8	5.3	6.7	7.7	9.6	16.7	22.7	24.6	36.7	56.0
	L-6CHD	1.7	2.7	3.9	4.3	5.2	6.0	7.4	12.9	17.5	19.0	28.3	42.0
	L-7CFB	1.6	2.5	3.8	4.2	5.1	6.0	7.5	13.4	18.8	20.5	32.0	53.6
	L-7CHD	1.4	2.3	3.3	3.6	4.4	5.1	6.3	10.9	14.7	15.9	23.5	34.4
	L-8CHD	1.2	2.0	2.9	3.2	3.9	4.4	5.5	9.6	13.0	14.1	21.1	30.4
	L-8CUHD	1.2	2.0	2.9	3.2	3.8	4.4	5.4	9.1	12.2	13.2	19.1	27.9
	LV-61S	3.8	6.6	10.4	11.5	14.4	16.8	20.9	36.8	50.4	54.8	83.1	—
	LV-77S	2.9	5.2	8.1	9.0	11.3	13.1	16.3	28.6	—	_	_	_

75Ω Low Loss Coax Cable Attenuation Chart

50Ω Coaxial Cables

50Ω Coaxial Cables

	Model	Sales units	Nom. O.D.	Weight	Inner cond.		Insulation	Out	er conductors					
Туре					Comp.	O.D.	O.D.	Foil	Braid comp. (coverage)	Inner cond. resist.	Outer cond. resist.	Static capacity	Charac- teristic impedance	Attenua- tion
		m	mm	kg/100m	(AWG) Q'ty/mm	mm	mm		mm/ends/ carriers	Ω/100m	Ω/100m	pF/m	Ω	dB/100m (10 MHz)
	L-3D2V	100 200	5.3	4.5	(20) 7/0.32A	0.96	3.0	_	0.14TA/5/24 (98%)	3.3	1.2	100	50	4.5
L-3D2V Jacket: PVC Color: GRY	L-5D2V		7.3	7.9	(15) 1/1.40A	1.40	4.8	_	0.14TA/7/24 (95%)	1.2	0.8	100	50	2.5
	L-3D2W	100 200	6.4	7.3	(20) 7/0.32A	0.96	3.0	—	0.14TA/5/24 (98%) 0.14TA/5/24 (96%)	3.3	0.6	100	50	4.5
L-3D2W Jacket: PVC Color: GRY	L-5D2W		8.0	11.0	(15) 1/1.40A	1.40	4.8	_	0.14TA/7/24 (95%) 0.14TA/7/24 (96%)	1.2	0.4	100	50	2.5
Jacket: PVC Color: ELK	L-5DFB	100 200	7.6	8.5	(14) 1/1.80A	1.80	5.0	AL	0.14TA/6/24 (90%)	0.7	1.1	84	50	2.4
Jacket: PE Color: BLK	L-5DFBW-PE	100 200	8.0	10.4	(14) 1/1.80A	1.80	5.0	AL	0.14TA/7/24 (93%) 0.14TA/8/24 (95%)	0.7	0.4	84	50	2.4

Insulation: polyethylene Dielectric strength: 1000V AC/min

L-3D2V, L-5D2V

• Tinned copper braided shield

L-3D2W, L-5D2W

• Tinned copper double braided shield

L-5DFB

• Low-loss foamed PE insulation

• Tinned copper braided shield with aluminum foil.

Note: Designed for fixed installation.

L-5DFBW-PE

· Ideal for digital microwave communication systems

• PE jacket for fixed outdoor installation

• Low-loss foamed PE insulation

• Tinned copper double braided shield with aluminum foil

Note: Designed for fixed installation.

dB/100m

Website

■ 50Ω Coax Cable Nominal Attenuation

/	Frequency															
Mode		10 MHz	130 MHz	470 MHz	600 MHz	710 MHz	714 MHz	800 MHz	1240 MHz	1260 MHz	1575 MHz	1700 MHz	2000 MHz	2400 MHz	2600 MHz	6000 MHz
50Ω	L-3D2V / L-3D2W	4.5	17.3	35.4	40.7	44.9	45.1	48.2	62.6	63.2	72.5	76.0	84.1	94.4	99.3	172.9
	L-5D2V / L-5D2W	2.5	9.6	19.6	22.6	25.0	25.1	26.8	35.0	35.3	40.5	42.5	47.1	53.0	55.8	98.0
	L-5DFB / L-5DFBW-PE	2.4	6.9	13.7	15.6	17.1	17.2	18.2	23.1	23.3	26.4	27.5	30.1	33.3	34.8	56.4